C18H24O2

Acta Cryst. (1996). C52, 2354-2356

Structures of the Diels–Alder Reaction Products of Thymoquinone and 1-Vinylcyclohexene. III. 5-Isopropyl-2-methyltricyclo[8.4.0.0^{2,7}]tetradeca-4,9-diene-3,6dione, $C_{18}H_{24}O_2$

J. ZUKERMAN-SCHPECTOR,^{*a*} I. CARACELLI,^{*b*} F. SILVA JR^{*b*} AND TIMOTHY JOHN BROCKSOM^{*a*}

^aDepartamento de Química, Universidade Federal de São Carlos, Caixa Postal 676, 13565-905 São Carlos, SP, Brazil, and ^bDepartamento de Física e Informática, Instituto de Física, Universidade de São Paulo, São Carlos, SP, Brazil. E-mail: julio@ifgsc.sc.usp.br

(Received 21 December 1995; accepted 26 March 1996)

Abstract

There are two slightly different molecules in the asymmetric unit of the title compound, each having all-*cis* ring fusion and an overall distorted hemispherical conformation. The cyclohexenedione rings are in a distorted half-boat conformation and the cyclohexene rings are in a distorted half-chair conformation, whereas the cyclohexane rings adopt an almost ideal chair conformation.

Comment

The Diels-Alder reactions of thymoquinone (4) and 1vinylcyclohexene (3) lead to several different products depending mainly upon the reaction conditions used; the thermal reaction products have been analysed in part I (Iulek, Zukerman-Schpector, Brocksom & Silva, 1993). Lewis-acid-catalysed reaction conditions (AlCl₃) or SnCl₄) produce a 1:1 ratio of two principal products (1) and (2). The crystal structure of (2) has already been reported (Iulek, Zukerman-Schpector, Brocksom & Silva, 1994). As (1) is the key precursor in the reaction pathway aiming at the synthesis of naturally occurring cembrane diterpenes which possess interesting biological activities (Tius, 1988), the knowledge of the relative stereochemistry of the three contiguous stereogenic centres helps in the prediction of the steric course of subsequent reactions.

The two independent molecules which have overall distorted hemispherical conformations are rotamers, differing mainly in the isopropyl group orientation. The

methine H atom of the isopropyl group of the unprimed molecule points outwards whereas that of the primed one points inwards in the distorted hemisphere. Cremer and Pople's (1975) puckering parameters of the unprimed molecule show that the cyclohexenedione ring is in a conformation which lies between a half-boat and a half-chair $[O = 0.411 (6) \text{ Å}, \theta = 56.1 (9), \varphi = 313 (1)^{\circ}], \phi = 313 (1)^{\circ}$ the cyclohexene ring is in a slightly distorted halfchair conformation $[Q = 0.459(6) \text{ Å}, \theta = 48.3(8), \varphi =$ 89(1)°] and the cyclohexane ring is in a chair conformation $[Q = 0.568(7) \text{ Å}, \theta = 177.0(7), \varphi = 166(13)^{\circ}].$ While the puckering parameters of the primed molecule show that the cyclohexenedione ring is in a half-boat, distorted towards a boat, conformation [Q = 0.432(6)]Å, $\theta = 122.7$ (8), $\omega = 120(1)^{\circ}$, the cyclohexene ring is in a distorted half-chair conformation [O = 0.452(6)]Å, $\theta =$ 131.5 (8), $\varphi = 266 (1)^{\circ}$ and the cyclohexane ring is in a distorted chair, towards a half-boat, conformation [Q =0.567(6) Å, $\theta = 6.1(6)$, $\varphi = 4(6)^{\circ}$].

Fig. 1. Projection of the unprimed molecule showing the atom labelling. 50% probability displacement ellipsoids are shown.

Experimental

Crystals of the title compound were obtained by slow evaporation from hexane.

Crystal data

$$C_{18}H_{24}O_2$$
 Mo $K\alpha$ radiation

 $M_r = 272.386$
 $\lambda = 0.71073$ Å

 Triclinic
 Cell parameters from 25

 $P\overline{1}$
 reflections

 $a = 8.707 (1)$ Å
 $\theta = 8.28 - 17.05^{\circ}$
 $b = 12.106 (2)$ Å
 $\mu = 0.075 \text{ mm}^{-1}$
 $c = 14.704 (4)$ Å
 $T = 293 \text{ K}$
 $\alpha = 92.03 (1)^{\circ}$
 Irregular

 $\beta = 91.55 (1)^{\circ}$
 $0.20 \times 0.15 \times 0.13 \text{ mm}$
 $\gamma = 96.86 (1)^{\circ}$
 Yellow

 $V = 1537.08 (52)$ Å³
 $Z = 4$
 $D_x = 1.1771 \text{ Mg m}^{-3}$
 D_m not measured

Acta Crystallographica Section C ISSN 0108-2701 © 1996

Data collection				Table 2. Geometric parameters (Å, °)				
Enraf-Nor	nius CAD-4		$R_{\rm int} = 0.0464$		01—C3	1.219 (6)	01'-C3'	1.213 (6)
diffracto	ometer		$\theta_{\rm max} = 23.02^{\circ}$		O2—C6	1.205 (6)	O2'—C6'	1.215 (6)
$\omega/2\theta$ scans			$h = -9 \rightarrow 9$		C1-C10	1.504 (8)	C1'-C10'	1.495 (7)
Absorption	n correction:		$k = -13 \rightarrow 13$		CI = CI4	1.525 (7)	CI' = CI4'	1.541 (7)
none			$l = 0 \rightarrow 16$		$C_{1} = C_{2}$	1.562(7)	$C_1' = C_2'$	1.557 (7)
4616 massured reflections			2 standard reflec	tions	$C_2 = C_1$	1.529 (7)	$C_2' = C_15'$	1.526 (7)
4010 inclusion dent reflections			2 standard Terrec	nons no min	C2—C7	1.538 (7)	C2'-C7'	1.541 (7)
4284 independent reflections			flequency. To		C3—C4	1.477 (8)	C3'—C4'	1.479 (8)
1684 observed renections			intensity decay	y: −0.9%	C4—C5	1.349 (8)	C4'-C5'	1.341 (7)
$[I > 2\sigma]$	·(I)]				C5—C6	1.474 (8)	C5'C6'	1.479 (8)
					C5-C16	1.509 (7)	CS' = C16'	1.504 (7)
Refinement					CoC7	1.508(7)	$C_{0} = C_{1}^{\prime}$	1.509 (8)
Refinement on F^2			$\Delta \rho_{\rm max} = 0.280 \ {\rm e}$	\dot{A}^{-3}	C8-C9	1.483 (8)	C8'-C9'	1.485 (8)
R(F) = 0.0609			$\Delta \rho_{\rm min} = -0.202$	$e Å^{-3}$	C9-C10	1.320 (8)	C9'-C10'	1.315 (7)
$wR(F^2) = 0.1273$			Extinction correct	ction:	C10-C11	1.496 (8)	C10'-C11'	1.499 (7)
S = 1.158			SHFLX193 (S	heldrick	C11—C12	1.523 (9)	C11' - C12'	1.524 (8)
3 = 1.130			1003)	norai ion,	C12 - C13	1.500 (9)	C12 = C13 C13' = C14'	1.509 (8)
			Extinction coeffi	ciant:	C13-C14 C16-C17	1.320 (8)	C15 - C17	1.498 (8)
364 parameters		77.6		cient.	C16-C18	1.527 (8)	C16'C18'	1.516 (8)
H atoms:	one common	U for	0.0090 (14)	c .	010 01 014	100 5 (5)		107.2 (5)
each mo	olecule	oc p) ²	Atomic scatterin	g factors	C10-C1-C14	108.3(3)	C10' - C1' - C2'	107.2 (5)
$w = 1/[\sigma^2(F_o^2) + (0.0505P)^2]$			from International Tables		C10-C1-C2	117.7(5)	C10 = C1' = C2' C14' = C1' = C2'	117.7 (4)
+ 1.2	.072 <i>P</i>]	2	for Crystallography (1992,		C3-C2-C15	110.1 (5)	C3'-C2'-C15'	108.9 (5)
where $P = (F_o^2 + 2F_c^2)/3$			Vol. C, Tables 4.2.6.8 and		C3—C2—C7	109.8 (5)	C3'—C2'—C7'	110.3 (5)
$(\Delta/\sigma)_{\rm max}$	= -0.001		6.1.1.4)		C15—C2—C7	109.5 (5)	C15'—C2'—C7'	110.0 (5)
•					C3—C2—C1	108.6 (5)	C3' - C2' - C1'	108.6 (5)
Table 1 Fractional atomic coordinates and equivalent				d equivalent	C15-C2-C1	108.5 (5)	C15' - C2' - C1'	108.4 (4)
\dot{i}_{1}				Å2)	01 - 03 - 04	110.4 (4)	01' - 03' - 04'	110.5 (4)
	isotropic ut	spiaceme	ini purumeters (A)	01 - C3 - C4 01 - C3 - C2	121.1 (6)	01'-C3'-C2'	120.6 (6)
	Um =	$(1/3)\Sigma_{i}\Sigma_{j}$			C4-C3-C2	119.2 (6)	C4'-C3'-C2'	119.5 (5)
	્લ	(1)0)-[-	.) © ()={ =} =; =; =; =; =;		C5-C4-C3	124.0 (6)	C5'-C4'-C3'	123.8 (5)
	x	y ,	Ζ	U_{eq}	C4C6	118.3 (5)	C4'-C5'-C6'	117.8 (5)
01	0.6167 (6)	1.3256 (4	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	0.081(2)	C4C5C16	124.3 (6)	C4' - C5' - C16'	123.2 (5)
02	0.7320(3) 0.4725(7)	1 2009 (4	1) 0.0908 (3)	0.0007(13)	0^{-0}	117.4 (5)	$0^{\prime} - 0^{\prime} - 0^{\prime}$	120.9(5)
C2	0.6422 (6)	1.2407 (4	(4) 0.7302(4)	0.0426 (15)	02-00-03	123.3 (6)	02' - C6' - C7'	122.5 (6)
C3	0.6478 (7)	1.2442 (5) 0.8324 (4)	0.053 (2)	C5-C6-C7	116.9 (5)	C5'—C6'—C7'	116.4 (5)
C4	0.6873 (7)	1.1458 (5) 0.8805 (4)	0.054 (2)	C6—C7—C8	112.6 (5)	C6'-C7'-C8'	113.8 (5)
C5	0.7223 (6)	1.0517 (5) 0.8383 (4)	0.045 (2)	C6C7C2	113.3 (5)	C6' - C7' - C2'	111.8 (5)
C6	0.7346 (6)	1.0496 (0.7385(4)	0.043 (2)	C8—C7—C2	112.6 (5)	C8' - C7' - C2'	112.2 (5)
C8	0.7527(0) 0.7475(7)	1 1489 (0.0939(4) 0.5909(4)	0.0433(13) 0.057(2)	C_{10}	125.8 (6)	C10'C9'C8'	125.2 (6)
C9	0.5864 (8)	1.1380 ((1) = 0.5533(4)	0.056 (2)	C9-C10-C11	124.2 (6)	C9'-C10'-C1'	123.1 (5)
C10	0.4639 (7)	1.1616 (5) 0.5977 (4)	0.050 (2)	C9-C10-CI	122.7 (6)	C9'—C10'—C11'	122.4 (6)
C11	0.3014 (8)	1.1408 (5) 0.5598 (4)	0.071 (2)	C11-C10-C1	112.8 (6)	C1'—C10'—C11'	114.3 (5)
C12	0.2011 (7)	1.0568 (5) 0.6142 (6)	0.077 (2)	C10-C11-C12	112.0 (5)	C10'-C11'-C12'	109.9 (5)
C13	0.2113(7)	1.0928 (0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 7507 \\ (4) \end{array}$	0.074 (2)	C13 - C12 - C11	109.8 (6)	$C13^{\circ} - C12^{\circ} - C11^{\circ}$	112.0(5) 113.0(5)
C14 C15	0.3777(7) 0.6895(7)	1 3571 (0.7507(4)	0.055(2)	$C1_{}$	112.8 (0)	C12' - C13' - C14' - C1'	110.4 (5)
C16	0.7515(7)	0.9479 (5) 0.8866 (4)	0.056 (2)	C17C16C5	116.2 (5)	C17'-C16'-C5'	114.9 (5)
C17	0.6916 (9)	0.9376 (6) 0.9796 (5)	0.096 (3)	C17-C16-C18	111.8 (5)	C17'-C16'-C18'	111.3 (6)
C18	0.9236 (8)	0.9349 (5) 0.8844 (5)	0.070 (2)	C5-C16-C18	109.2 (5)	C5'—C16'—C18'	109.9 (5)
01'	0.6949 (6)	0.2184 (4	$\begin{array}{c} 4) & 0.1138 (3) \\ 0.0744 (3) \end{array}$	0.080(2)				
02°	0.8196 (5)	0.0125 (.	$\begin{array}{ccc} 0.2/44(3) \\ 0.2006(4) \end{array}$	0.0077(13) 0.0412(15)	H atoms were place	ed on stere	ochemical grounds a	nd included
C2'	0.7115 (6)	0.3200 ((4) 0.2553 (4) 0.2553 (4)	0.0422 (15)	as fixed contribut	tors with	an overall isotropic	cal thermal
C3'	0.7064 (7)	0.3094 (5) 0.1524 (4)	0.049 (2)	narameter for each	h independe	ent molecule that co	onverged to
C4′	0.7222 (6)	0.4110 (:	5) 0.0989 (4)	0.048 (2)	U = 0.076 (A) and	0.075(4) Å	2 for the unprimed	and primed
C5'	0.7505 (6)	0.5145 (5) 0.1359 (4)	0.0423 (15)	0 = 0.070 (4) and		Tor the unprimed	una primea
C6'	0.7566 (7)	0.5277 ($\begin{array}{c} 0.2364(4) \\ 0.2973(4) \end{array}$	0.047(2)	Deta callection	CAD A S	offware (Enrof Nor	ine 1080)
C ²	0.6700(6)	0.4550 (.	5) 0.2875(4) 5) 0.3907(4)	0.040(2)	Data conection	CAD-4 S	ojiware (Eiliai-Noil	$\frac{100}{200}, \frac{1707}{200}$
C9'	0.8219(7)	0.4088 (5) 0.4306 (4)	0.054 (2)	Cell rennement:	CAD-4 Soft	ware. Data reducti	OII: CAD-4
C10'	0.9070 (6)	0.3422 (5) 0.3878 (4)	0.0415 (15)	Software. Program	n(s) used 1	o solve structure:	SHELXS80
C11′	1.0514 (7)	0.3075 (5) 0.4301 (4)	0.054 (2)	(Sheldrick, 1985)	. Program	(s) used to refine	structure:
C12'	1.1909 (7)	0.3504 (5) 0.3755 (4)	0.056 (2)	SHELXL93 (Sheld	rick, 1993)	. Molecular graphic	s: ZORTEP
C13'	1.1659 (7)	0.3210 ($\begin{array}{ccc} 0.2752(4) \\ 5 & 0.2262(4) \end{array}$	0.059 (2)	(Zsolnai, 1995).			
C14	1.0152 (0)	0.3340 (5) U.2303 (4) 5) 0.2021 (4)	0.047 (2)				
C15 C16'	0.7816(7)	0.6163 (0.0804(4)	0.054 (2)	701.º 1 1		antial array of f	
C17'	0.7137 (8)	0.6044 (6) -0.0147 (5)	0.077 (2)	I IIS WORK has	received j	Sartial support from	II FAPESP
C18′	0.9541 (8)	0.6540 (6) 0.0807 (5)	0.092 (3)	(Proc. 94/1213-5	o), CNPq,	CAPES and FINE	Γ.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: L11143). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Iulek, J., Zukerman-Schpector, J., Brocksom, T. J. & Silva, F. Jr (1993). Acta Cryst. C49, 1657–1659.
- Iulek, J., Zukerman-Schpector, J., Brocksom, T. J. & Silva, F. Jr (1994). Acta Cryst. C50, 85–86.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. University of Göttingen, Germany.
- Tius, M. A. (1988). Chem. Rev. 88, 719-732.

Zsolnai, L. (1995). ZORTEP. University of Heidelberg, Germany.

Acta Cryst. (1996). C52, 2356-2359

Methyl 2,7,7-Trimethyl-4-(3-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3carboxylate and 3-Acetyl-2,7,7-trimethyl-4-phenyl-1,4,5,6,7,8-hexahydro-5-quinolone

Angel Dago Morales,^a Santiago García-Granda,^b Margarita Suárez Navarro,^c Alhmed Morales Diviú^c and Remberto Espinosa Pérez-Barquero^c

^aDirección de Química, Centro Nacional de Investigaciones Científicas, Apartado Postal 6990, Ciudad de la Habana, Cuba, ^bDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Avda. Julián Clavería, 8, 33006 Oviedo, Spain, and ^cLaboratorio de Síntesis Orgánica, Facultad de Química, Universidad de la Habana, Cuba. E-mail: sgg@dwarf1.quimica.uniovi.es

(Received 12 January 1996; accepted 3 April 1996)

Abstract

The 1,4-dihydropyridine (1,4-DHP) ring and the cyclohexanone ring adopt similar conformations in both the title compounds, methyl 2,7,7-trimethyl-4-(3-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, $C_{20}H_{22}N_2O_5$, (I) and 3-acetyl-2,7,7-trimethyl-4phenyl-1,4,5,6,7,8-hexahydro-5-quinolone, $C_{20}H_{23}NO_2$, (II). The 1,4-DHP rings have boat conformations with the aryl group occupying the pseudo-axial position and orthogonal to the plane through the 1,4-DHP ring. The cyclohexanone ring has an intermediate half-chair/sofa form. In both compounds, the carboxyl group is coplanar to the endocyclic double bond as a consequence of π conjugation. The molecules are linked by N—H···O hydrogen bonds but the packing is different in each case. In compound (I) a hydrogen bond is formed between the N—H and the carboxyl group while in compound (II), a hydrogen bond is formed between the N—H and the O atom of the cyclohexanone ring.

Comment

1,4-Dihydropyridines (1,4-DHP) such as nifedipine and other related structures are the most important calcium antagonists and are well established drugs for the treatment of cardiovascular diseases (Bosert & Vater. 1989; Martín-León & Seoane, 1990). In contrast to this, derivatives of 1,4-DHP which are closely related in structure can act as calcium agonists (Goldmann & Stoltefuss, 1991) whereby the 1.4-DHP agonist enhances Ca²⁺ influx across the cell membrane and thus produces quite the opposite pharmacological effect. It has been reported that the presence of fused five-membered lactones or cyclohexanone rings in the 1,4-DHP system leads to compounds which exhibit calcium agonist (Martín-León et al., 1995; Goldmann & Stoltefuss, 1991), or similar effects (Rose & Dräguer, 1992). The crystal structure analyses of the title compounds (I) and (II) were carried out in order to investigate the conformational features of 1,4-DHP when fused with a cyclohexanone ring.

The 1,4-DHP ring and the cyclohexanone ring adopt similar conformations in both compounds. The 1,4-DHP ring has a boat conformation $[Q_T = 0.257 (3) \text{ and} 0.266 (5) \text{ Å}$ for compounds (I) and (II), respectively] with two local pseudo-mirror planes, one running along N1...C4 and the other through the midpoints of the C2—C2 and C4a—C8a bonds. The aryl group occupies the pseudo-axial position in both compounds and is orthogonal to the mean plane through the 1,4-DHP ring. In compound (I), the nitro substituent on the phenyl ring is synperiplanar to the H atom H(4) of the 1,4-DHP ring. This is in agreement with the previously reported